Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 755
Filtrar
1.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656455

RESUMEN

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Asunto(s)
Alginatos , Anticuerpos Antivirales , Quitosano , Inmunidad Mucosa , Inmunoglobulina A , Inmunoglobulina G , Virus de la Diarrea Epidémica Porcina , Vacunas Virales , Animales , Administración Oral , Virus de la Diarrea Epidémica Porcina/inmunología , Alginatos/administración & dosificación , Quitosano/administración & dosificación , Ratones , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Anticuerpos Antivirales/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Porcinos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Femenino , Geles/administración & dosificación , Ratones Endogámicos BALB C , Interferón gamma/inmunología , Ácido Glucurónico/administración & dosificación , Ácidos Hexurónicos/administración & dosificación
2.
J Pharm Sci ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582281

RESUMEN

The oral formulation design for colon-specific drug delivery brings some therapeutic benefits in the ulcerative colitis treatment. We recently reported the specific delivery of hemoglobin nanoparticles-conjugating 5-aminosalicylic acid (5-ASA-HbNPs) to the inflamed site. In the current study, the therapeutic effect of the 5-ASA-HbNPs formulation was confirmed in vivo. This evaluation of 5-ASA-HbNPs not only shows longer colonic retention time due to adhesive properties, also provides full support for it as compared with free 5-ASA. It was considered as a suitable bio-adhesive nanoparticle with mucoadhesive property to pass through the mucus layer and accumulate into the mucosa. In UC model mice, a two-fold decrease in the disease activity indexes and colon weight/length ratios was significantly observed in the group treated with 5-ASA-HbNPs. This group received one percent of the standard dosage of 5-ASA (50 µg/kg), while, a similar result was observed for a significant amount of free 5-ASA (5 mg/kg). Furthermore, microscopic images of histological sections of the extracted colons demonstrated that the 5-ASA-HbNPs and 5-ASA groups displayed instances of inflammatory damage within the colon. However, in comparison to the colitis group, the extent of this damage was relatively moderate, suggesting 5-ASA-HbNPs improved therapeutic efficacy with the lower dosage form.

3.
Arch Microbiol ; 206(5): 219, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627275

RESUMEN

Aeromonas hydrophila is one of the major freshwater fish pathogens. In the current study, a cocktail of D6 and CF7 phages was given orally to Labeo rohita to assess phage survival in fish organs as well as to determine the therapeutic efficacy of phage treatment against fish mortality caused by A. hydrophila. In the phage-coated feed, prepared by simple spraying method, phage counts were quite stable for up to 2 months with a decline of ≤ 0.23 log10 and ≤ 1.66 log10 PFU/g feed during 4 oC and room temperature storage. Throughout the experimental period of 7 days, both phages could be detected in the gut of fish fed with phage-coated feed. Besides, both CF7 and D6 phages were also detected in fish kidneys indicating the ability of both the phage to cross the intestinal barrier. During challenge studies with LD50 dose of A. hydrophila, phage cocktail doses of 1 × 106 - 1 × 108 PFU/g feed prevented the mortality in L. rohita with relative percentage survival (RPS) of 8.7-65.2. When challenged with LD90 dose of A. hydrophila, an RPS value of 28.6 was obtained at a phage cocktail dose of 1 × 108 PFU/g feed. The RPS data showed that orally-fed phage cocktail protected the fish against the mortality caused by A. hydrophila in a dose-dependent manner. Simple practical approaches for phage cocktail development, medicated feed preparation and oral administration along with phage survival and protection data make the current study useful for farmer-level application.


Asunto(s)
Bacteriófagos , Cyprinidae , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas hydrophila , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria
4.
Biol Pharm Bull ; 47(4): 848-855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616115

RESUMEN

In this study, we prepared antisense oligonucleotide (ASO)-encapsulated nanoparticles (NPs) with a suitable profile for oral administration for the treatment of inflammatory bowel disease (IBD). We chose a water-in-oil-in-water (w/o/w) method to prepare the NPs using poly(lactide-co-glycolide) as a matrix and Pluronic as a stabilizer. The obtained NPs had a suitable diameter (158 nm) for the penetration of the mucus layer, endocytic uptake by enterocytes, and accumulation in inflammatory lesions in the intestine. The amount of ASOs in the NPs was relatively large (6.41% (w/w)). When the NPs were stably dispersed in solutions that mimicked gastrointestinal (GI) juice, minimal leakage of ASOs was demonstrated over the required period. The NPs were administered orally to mice with colitis induced by dextran sodium sulfate, which reduced target gene expression in the colons and rectums of the mice, whereas naked ASO administration caused no reduction in gene expression. Thus, the NPs have the potential of promising oral carriers of ASOs for the treatment of IBD that specifically target inflammatory lesions in the GI tract, thereby reducing the non-specific toxic effects of ASOs.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Nanopartículas , Animales , Ratones , Oligonucleótidos Antisentido , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Administración Oral , Agua
5.
Food Res Int ; 184: 114222, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609214

RESUMEN

Anthocyanin (AN) has good antioxidant and anti-inflammatory bioactivities, but its poor biocompatibility and low stability limit the application of AN in the food industry. In this study, core-shell structured carriers were constructed by noncovalent interaction using tannic acid (TA) and poloxamer 188 (F68) to improve the biocompatibility, stability and smart response of AN. Under different treatment conditions, TA-F68 and AN were mainly bound by hydrophobic interaction. The PDI is less than 0.1, and the particle size of nanoparticles (NPs) is uniform and concentrated. The retention of the complex was 15.50 % higher than that of AN alone after 9 d of light treatment. After heat treatment for 180 min, the retention rate after loading was 13.87 % higher than that of AN alone. The carrier reduce the damage of AN by the digestive environment, and intelligently and sustainedly release AN when the esterase is highly expressed. In vitro studies demonstrated that the nanocarriers had good biocompatibility and significantly inhibited the overproduction of reactive oxygen species induced by oxidative stress. In addition, AN-TA-F68 has great potential for free radical scavenging at sites of inflammation. In conclusion, the constructed nano-delivery system provides a potential application for oral ingestion of bioactive substances for intervention in ulcerative colitis.


Asunto(s)
Antocianinas , Nanopartículas , Antocianinas/farmacología , Polifenoles/farmacología , Antioxidantes/farmacología
6.
Int J Pharm ; 656: 124115, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38614430

RESUMEN

Fibroblast growth factor 21 (FGF21) shows great therapeutic potential in metabolic, neurodegenerative and inflammatory diseases. However, current FGF21 administration predominantly relies on injection rather than oral ingestion due to its limited stability and activity post-gastrointestinal transit, thereby hindering its clinical utility. Milk-derived exosomes (mEx) have emerged as a promising vehicle for oral drug delivery due to their ability to maintain structural integrity in the gastrointestinal milieu. To address the challenge associated with oral delivery of FGF21, we encapsulated FGF21 within mEx (mEx@FGF21) to protect its activity post-oral administration. Additionally, we modified the surface of mEx@FGF21 by introducing transferrin (TF) to enhance intestinal absorption and transport, designated TF-mEx@FGF21. In vitro results demonstrated that the surface modification of TF promoted FGF21 internalization by intestinal epithelial cells. Orally administered TF-mEx@FGF21 showed promising therapeutic effects in septic mice. This study represents a practicable strategy for advancing the clinical application of oral FGF21 delivery.

7.
Biomaterials ; 307: 122530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493672

RESUMEN

The therapeutic efficacy of oral nanotherapeutics against colorectal cancer (CRC) is restricted by inadequate drug accumulation, immunosuppressive microenvironment, and intestinal microbiota imbalance. To overcome these challenges, we elaborately constructed 6-gingerol (Gin)-loaded magnetic mesoporous silicon nanoparticles and functionalized their surface with mulberry leaf-extracted lipids (MLLs) and Pluronic F127 (P127). In vitro experiments revealed that P127 functionalization and alternating magnetic fields (AMFs) promoted internalization of the obtained P127-MLL@Gins by colorectal tumor cells and induced their apoptosis/ferroptosis through Gin/ferrous ion-induced oxidative stress and magneto-thermal effect. After oral administration, P127-MLL@Gins safely passed to the colorectal lumen, infiltrated the mucus barrier, and penetrated into the deep tumors under the influence of AMFs. Subsequently, the P127-MLL@Gin (+ AMF) treatment activated antitumor immunity and suppressed tumor growth. We also found that this therapeutic modality significantly increased the abundance of beneficial bacteria (e.g., Bacillus and unclassified-c-Bacilli), reduced the proportions of harmful bacteria (e.g., Bacteroides and Alloprevotella), and increased lipid oxidation metabolites. Strikingly, checkpoint blockers synergistically improved the therapeutic outcomes of P127-MLL@Gins (+ AMF) against orthotopic and distant colorectal tumors and significantly prolonged mouse life spans. Overall, this oral therapeutic platform is a promising modality for synergistic treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Liposomas , Nanopartículas , Ratones , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Nanopartículas/uso terapéutico , Administración Oral , Fenómenos Magnéticos , Microambiente Tumoral
8.
ACS Appl Mater Interfaces ; 16(14): 17891-17903, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38546545

RESUMEN

Covalent organic frameworks (COFs) have demonstrated versatile application potential since their discovery. Although the structure of COFs is orderly arranged, the synthesis of controllable macrostructures still faces challenges. Herein, we report, to our knowledge, the first template-free self-assembled COF-18 Å hollow microtubule (MT-COF-18 Å) structure and its use for insulin delivery that exhibits high loading capacity, gastroresistance, and glucose-responsive properties. The hollow MT-COF-18 Å was achieved by a template-free method benefiting from the mixed solvents of mesitylene and dioxane. The formation mechanism and morphology changes with insulin loading and release were observed. In Caco-2 cells, the transferrin-coated system demonstrated enhanced insulin cellular uptake and transcellular transport, which indicated great potential for oral applications. Additionally, the composites presented sustained glycemic control and effective insulin blood concentrations without noticeable toxicity in diabetic rats. This work shows that hollow microtubular COFs hold great promise in loading and delivery of biomolecules.


Asunto(s)
Diabetes Mellitus Experimental , Estructuras Metalorgánicas , Animales , Ratas , Humanos , Insulina , Células CACO-2 , Diabetes Mellitus Experimental/tratamiento farmacológico , Transporte Biológico
9.
Nutrients ; 16(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474872

RESUMEN

Sodium bicarbonate is used as an ergogenic supplement to enhance people's performances in various exercises. This study aimed to evaluate the effects of intestinal delivery of sodium bicarbonate on bicarbonate absorption and associated side effects in an experimental human trial. After preparing and assessing enteric-coated and uncoated sodium bicarbonate tablet formulations, pharmacokinetic analysis and gastrointestinal symptom tests were performed after oral administration in the human body. The dose required to increase blood bicarbonate concentration over 5 mmol∙L-1 for the purpose of improving performance during high-intensity exercise was also determined. Enteric-coated tablet formulation protects sodium bicarbonate under acidic conditions and releases bicarbonate in the intestine. Enteric-coated tablet formulation also reduced the oral dose required to achieve a blood bicarbonate concentration over 5 mmol∙L-1 from 300 mg∙kg-1 of uncoated tablet formulation to 225 mg∙kg-1. Gastrointestinal discomfort was significantly decreased for the group given 225 mg∙kg-1 enteric-coated tablets compared to that given 300 mg∙kg-1 uncoated tablets. These results suggest that enteric-coated tablet formulation could reduce the oral dose required in order to achieve a blood bicarbonate concentration over 5 mmol∙L-1 by 25%, from 300 mg∙kg-1 to 225 mg∙kg-1, along with its ability to reduce gastrointestinal discomfort associated with the dosage.


Asunto(s)
Bicarbonatos , Bicarbonato de Sodio , Humanos , Administración Oral , Disponibilidad Biológica , Comprimidos Recubiertos
10.
J Matern Fetal Neonatal Med ; 37(1): 2327573, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38485520

RESUMEN

OBJECTIVE: This study aims to compare the safety and efficacy of misoprostol administered orally and vaginally in obese pregnant women at term with either gestational hypertension or diabetes. METHODS: A total of 264 pregnant women were enrolled and categorized into two groups based on their primary condition: hypertension (134 cases) or diabetes mellitus (130 cases) and were further divided into subgroups for misoprostol administration: orally (Oral group) or vaginally (Vaginal group). The primary outcomes measured were changes in the Bishop score following treatment, induction of labor (IOL) success rates, requirement for oxytocin augmentation, duration of labor, mode of delivery, and cesarean section rates. RESULTS: Significant enhancements in Bishop scores, decreased cesarean section rates and increased success rates of IOL were noted in both administration groups. The incidence of vaginal delivery within 24 h was significantly higher in the Vaginal group compared to the Oral group. Adverse effects, including nausea, uterine overcontraction, hyperfrequency of uterine contraction and uterine hyperstimulation without fetal heart rate deceleration, were significantly more prevalent in the Vaginal group than in the Oral group. CONCLUSION: Misoprostol administration, both orally and vaginally, proves effective for labor induction in obese pregnant women with hypertension or diabetes. However, the oral route presents a lower risk of adverse maternal and neonatal outcomes, suggesting its preference for safer labor induction in this demographic.


Asunto(s)
Diabetes Mellitus , Hipertensión Inducida en el Embarazo , Misoprostol , Oxitócicos , Recién Nacido , Embarazo , Femenino , Humanos , Misoprostol/efectos adversos , Oxitócicos/efectos adversos , Mujeres Embarazadas , Administración Intravaginal , Cesárea , Trabajo de Parto Inducido , Administración Oral , Hipertensión Inducida en el Embarazo/tratamiento farmacológico
11.
Colloids Surf B Biointerfaces ; 237: 113849, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492413

RESUMEN

Oral colonic nano-drug delivery system has received more and more attention in the treatment of colon cancer due to local precision treatment and reduction of drug system distribution. However, the complex and harsh gastrointestinal environment and the retention of nanoparticles in the colon limit its development. To this end, we designed Eudragit S100 (ES) coated nanoparticles (ES@PND-PEG-TPP/DOX). Polydopamine coated nanodiamond (PND) was modified with amino-functionalized polyethylene glycol (NH2-PEG-NH2) and triphenylphosphine (TPP) successively. Due to the high specific surface area of PND, it can efficiently load the model drug doxorubicin hydrochloride (DOX). In addition, PND also has high photothermal conversion efficiency, generating heat to kill cancer cells under near infrared (NIR) laser, realizing the combination of chemotherapy and photothermal therapy (CT-PTT). TPP modification enhanced nanoparticle uptake by colon cancer cells and prolonged preparations retention time at the colon. ES shell protected the drug from being destroyed and prevented the nanoparticles from sticking to the small intestine. Ex vitro fluorescence imaging showed that TPP modification can enhance the residence time of nanoparticles in the colon. In vivo pharmacodynamics demonstrated that CT-PTT group has the greatest inhibitory effect on tumor growth, which means that the nanocarrier has potential clinical value in the in-situ treatment of colon cancer.


Asunto(s)
Neoplasias del Colon , Nanodiamantes , Nanopartículas , Ácidos Polimetacrílicos , Humanos , Fototerapia/métodos , Doxorrubicina/farmacología , Neoplasias del Colon/tratamiento farmacológico , Línea Celular Tumoral
12.
Fish Shellfish Immunol ; 146: 109425, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316348

RESUMEN

As a series of our previous studies reported, recombinant yeast can be the oral vaccines to deliver designed protein and DNA, as well as functional shRNA, into dendritic cells (DCs) in mice for specific immune regulation. Here, we report the further optimization of oral yeast-based vaccine from two aspects (yeast characteristics and recombinant DNA constitution) to improve the effect of immune regulation. After screening four genes in negative regulation of glucan synthesis in yeast (MNN9, GUP1, PBS2 and EXG1), this research combined HDR-based genome editing technology with Cre-loxP technology to acquire 15 gene-knockout strains without drug resistance-gene to exclude biosafety risks; afterward, oral feeding experiments were performed on the mice using 15 oral recombinant yeast-based vaccines constructed by the gene-knockout strains harboring pCMV-MSTN plasmid to screen the target strain with more effective inducing mstn-specific antibody which in turn increasing weight gain effect. And subsequently based on the selected gene-knockout strain, the recombinant DNA in the oral recombinant yeast-based vaccine is optimized via a combination of protein fusion expression (OVA-MSTN) and interfering RNA technology (shRNA-IL21), comparison in terms of both weight gain effect and antibody titer revealed that the selected gene-knockout strain (GUP1ΔEXG1Δ) combined with specific recombinant DNA (pCMV-OVA-MSTN-shIL2) had a better effect of the vaccine. This study provides a useful reference to the subsequent construction of a more efficient oral recombinant yeast-based vaccine in the food and pharmaceutical industry.


Asunto(s)
ADN Recombinante , Saccharomyces cerevisiae , Ratones , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN Recombinante/metabolismo , Vacunas Sintéticas , ARN Interferente Pequeño , Aumento de Peso
13.
Microorganisms ; 12(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38399646

RESUMEN

Orally administered compounds represent the great majority of all pharmaceutical compounds produced for human use and are the most popular among patients since they are practical and easy to self-administer. Following ingestion, orally administered drugs begin a "perilous" journey down the gastrointestinal tract and their bioavailability is modulated by numerous factors. The gastrointestinal (GI) tract anatomy can modulate drug bioavailability and accounts for interpatient drug response heterogeneity. Furthermore, host genetics is a contributor to drug bioavailability modulation. Importantly, a component of the GI tract that has been gaining notoriety with regard to drug treatment interactions is the gut microbiota, which shares a two-way interaction with pharmaceutical compounds in that they can be influenced by and are able to influence administered drugs. Overall, orally administered drugs are a patient-friendly treatment option. However, during their journey down the GI tract, there are numerous host factors that can modulate drug bioavailability in a patient-specific manner.

14.
Physiol Rep ; 12(4): e15952, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383135

RESUMEN

The perception regarding lactate has changed over the past decades, and some of its physiological roles have gradually been revealed. However, the effects of exogenous lactate on skeletal muscle synthesis remain unclear. This study aimed to confirm the effects of a 5-week lactate administration and post-exercise lactate administration on skeletal muscle synthesis. Thirty-two Institute of Cancer Research mice were randomly assigned to non-trained + placebo, non-trained + lactate, trained + placebo, and trained + lactate groups. Furthermore, 3 g/kg of lactate or an equivalent volume of saline was immediately administered after exercise training (maximum oxygen uptake: 70%). Lactate administration and/or exercise training was performed 5 days/week for 5 weeks. After the experimental period, it was observed that lactate administration tended to elevate skeletal muscle weight, increased protein kinase B (p < 0.05) and mammalian target of rapamycin (p < 0.05) mRNA levels, and decreased muscle ring-finger protein-1 expression (p < 0.05). Lactate administration after exercise training significantly enhanced plantaris muscle weight; however, it had no additional effects on most signaling factors. This study demonstrated that a 5-week lactate administration could stimulate skeletal muscle synthesis, and lactate administration after exercise training may provide additional effects, such as increasing skeletal muscle.


Asunto(s)
Ácido Láctico , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Ácido Láctico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Consumo de Oxígeno , Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Músculo Esquelético/metabolismo , Ratones Endogámicos , Mamíferos/metabolismo
15.
Eur J Pharm Sci ; 195: 106712, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290611

RESUMEN

Anxiety disorders are highly prevalent worldwide and can affect people of all ages, genders and backgrounds. Much efforts and resources have been directed at finding new anxiolytic agents and drug delivery systems (DDSs) especially for cancer patients to enhance targeted drug delivery, reduce drug adverse effects, and provide an analgesic effect. The aim of this study was (1) to design and develop novel nanofiber-based DDSs intended for the oral administration of new 1,2,3-triazolo-1,4-benzodiazepines derivatives, (2) to investigate the physical solid-state properties of such drug-loaded nanofibers, and (3) to gain knowledge of the anxiolytic activity of the present new benzodiazepines in rodents in vivo. The nanofibers loaded with 1,2,3-triazolo-1,4-benzodiazepine derivatives were prepared by means of electrospinning (ES). Field-emission scanning electron microscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used for the physicochemical characterization of nanofibers. The anxiolytic activity of new derivatives and drug-loaded nanofibers was studied with an elevated plus maze test and light-dark box test. New 1,2,3-triazolo-1,4-benzodiazepine derivatives showed a promising anxiolytic effect in mice with clear changes in behavioral reactions in both tests. The nanofiber-based DDS was found to be feasible in the oral delivery of the present benzodiazepine derivatives. The nanofibers generated by means of ES presented the diameter in a nanoscale, uniform fiber structure, capacity for drug loading, and the absence of defects. The present findings provide new insights in the drug treatment of anxiety disorders with new benzodiazepine derivatives.


Asunto(s)
Ansiolíticos , Nanofibras , Humanos , Femenino , Masculino , Ratones , Animales , Nanofibras/química , Benzodiazepinas , Hipnóticos y Sedantes , Anticonvulsivantes , Sistemas de Liberación de Medicamentos
16.
Bioorg Chem ; 144: 107110, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224636

RESUMEN

Wet age-related macular degeneration (w-AMD) is one of the leading causes of vision loss in industrialized countries. A large body of evidence suggests that inhibitors targeting VEGFR2 may be effective in the treatment of w-AMD. The identification of an oral VEGFR2 inhibitor for the treatment of w-AMD provides an opportunity for a route of administration other than intravitreal injection. While screening potent VEGFR2 inhibitors at the enzyme and cellular levels, ensuring the safety of the compounds was our primary strategy for screening optimal compounds. Finally, compound 16 was identified, exhibiting enhanced inhibition of VEGFR2 enzyme and proliferation of BaF3-TEL-VEGFR2 cells compared to Vorolanib. Compound 16 had a weak inhibitory effect on human Ether-a-go-go-related gene (hERG) channel currents, showing a cardiac safety profile similar to Vorolanib. Compound 16 showed no significant toxicity to human liver cell LX-2, indicating a liver safety profile similar to Vorolanib. The water solubility of compound 16 was found to be higher than that of Vorolanib when tested at pH = 7.4. In addition, compound 16 was found to inhibit VEGFR2 phosphorylation in human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner by WB assay. Furthermore, the in vitro preliminary evaluation of the drug-like properties of compound 16 showed remarkable plasma stability and moderate liver microsomal stability. Based on in vivo pharmacokinetic studies in ICR mice, compound 16 exhibited acceptable oral bioavailability (F = 20.2 %). Overall, these findings provide evidence that compound 16 is a leading potential oral drug candidate for w-AMD.


Asunto(s)
Degeneración Macular , Ratones , Animales , Humanos , Ratones Endogámicos ICR , Células Endoteliales de la Vena Umbilical Humana , Degeneración Macular/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular
17.
Carbohydr Polym ; 329: 121763, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286540

RESUMEN

Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.


Asunto(s)
Ciclodextrinas , Ciclodextrinas/farmacología , Preparaciones Farmacéuticas , Administración Oral , Sistemas de Liberación de Medicamentos , Disponibilidad Biológica , Solubilidad
18.
Carbohydr Polym ; 328: 121745, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220331

RESUMEN

Angelica sinensis polysaccharide (ASP) possesses diverse bioactivities; however, its metabolic fate following oral administration remains poorly understood. To intuitively determine its intestinal digestion behavior after oral administration, ASP was labeled with fluorescein, and it was found to accumulate and be degraded in the cecum and colon. Therefore, we investigated the in vitro enzymatic degradation behavior and identified the products. The results showed that ASP could be degraded into fragments with molecular weights similar to those of the fragments observed in vivo. Structural characterization revealed that ASP is a highly branched acid heteropolysaccharide with AG type II domains, and its backbone is predominantly composed of 1,3-Galp, →3,6)-Galp-(1→6)-Galp-(1→, 1,4-Manp, 1,4-Rhap, 1,3-Glcp, 1,2,3,4-Galp, 1,3,4,6-Galp, 1,3,4-GalAp and 1,4-GlcAp, with branches of Araf, Glcp and Galp. In addition, the high molecular weight enzymatic degradation products (ASP H) maintained a backbone structure almost identical to that of ASP, but exhibited only partial branch changes. Then, the results of ethanol-induced acute liver injury experiments revealed that ASP and ASP H reduced the expression of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and malondialdehyde (MDA) and increased the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) levels, thereby relieving ethanol-induced acute liver injury.


Asunto(s)
Angelica sinensis , Angelica sinensis/química , Etanol/toxicidad , Etanol/metabolismo , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Hígado , Estrés Oxidativo
19.
Small ; : e2307247, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243871

RESUMEN

Oral treatment of colon diseases with the CRISPR/Cas9 system has been hampered by the lack of a safe and efficient delivery platform. Overexpressed CD98 plays a crucial role in the progression of ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). In this study, lipid nanoparticles (LNPs) derived from mulberry leaves are functionalized with Pluronic copolymers and optimized to deliver the CRISPR/Cas gene editing machinery for CD98 knockdown. The obtained LNPs possessed a hydrodynamic diameter of 267.2 nm, a narrow size distribution, and a negative surface charge (-25.6 mV). Incorporating Pluronic F127 into LNPs improved their stability in the gastrointestinal tract and facilitated their penetration through the colonic mucus barrier. The galactose end groups promoted endocytosis of the LNPs by macrophages via asialoglycoprotein receptor-mediated endocytosis, with a transfection efficiency of 2.2-fold higher than Lipofectamine 6000. The LNPs significantly decreased CD98 expression, down-regulated pro-inflammatory cytokines (TNF-α and IL-6), up-regulated anti-inflammatory factors (IL-10), and polarized macrophages to M2 phenotype. Oral administration of LNPs mitigated UC and CAC by alleviating inflammation, restoring the colonic barrier, and modulating intestinal microbiota. As the first oral CRISPR/Cas9 delivery LNP, this system offers a precise and efficient platform for the oral treatment of colon diseases.

20.
ACS Nano ; 18(4): 3651-3668, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38241481

RESUMEN

Oral administration is the most preferred approach for treating colon diseases, and in situ vaccination has emerged as a promising cancer therapeutic strategy. However, the lack of effective drug delivery platforms hampered the application of in situ vaccination strategy in oral treatment of colorectal cancer (CRC). Here, we construct an oral core-shell nanomedicine by preparing a silk fibroin-based dual sonosensitizer (chlorin e6, Ce6)- and immunoadjuvant (imiquimod, R837)-loaded nanoparticle as the core, with its surface coated with plant-extracted lipids and pluronic F127 (p127). The resultant nanomedicines (Ce6/R837@Lp127NPs) maintain stability during their passage through the gastrointestinal tract and exert improved locomotor activities under ultrasound irradiation, achieving efficient colonic mucus infiltration and specific tumor penetration. Thereafter, Ce6/R837@Lp127NPs induce immunogenic death of colorectal tumor cells by sonodynamic treatment, and the generated neoantigens in the presence of R837 serve as a potent in situ vaccine. By integrating with immune checkpoint blockades, the combined treatment modality inhibits orthotopic tumors, eradicates distant tumors, and modulates intestinal microbiota. As the first oral in situ vaccination, this work spotlights a robust oral nanoplatform for producing a personalized vaccine against CRC.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Vacunas , Humanos , Imiquimod , Línea Celular Tumoral , Nanomedicina , Neoplasias Colorrectales/tratamiento farmacológico , Vacunación , Inmunoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...